Orders in Modular Arithmetic

نویسنده

  • KEITH CONRAD
چکیده

Example 1.1. Let m = 7. The following table shows that the first time a nonzero number mod 7 has a power congruent to 1 varies. While Fermat’s little theorem tells us that a6 ≡ 1 mod 7 for a 6≡ 0 mod 7, we see in the table that the exponent 6 can be replaced by a smaller positive exponent for 1, 2, 4, and 6. k 1 2 3 4 5 6 1k mod 7 1 2k mod 7 2 4 1 3k mod 7 3 2 6 4 5 1 4k mod 7 4 2 1 5k mod 7 5 4 6 2 3 1 6k mod 7 6 1 Example 1.2. Since φ(15) = 8, if (a, 15) = 1 then a8 ≡ 1 mod 15. But in fact, as the table below shows, the 8th power is always higher than necessary: the first, second, or fourth power of each number relatively prime to 15 is congruent to 1 mod 15. k 1 2 3 4 1k mod 15 1 2k mod 15 2 4 8 1 4k mod 15 4 1 7k mod 15 7 4 13 1 8k mod 15 8 4 2 1 11k mod 15 11 1 13k mod 15 13 4 7 1 14k mod 15 14 1 Definition 1.3. If (a,m) = 1 then the order of a mod m is the least n ≥ 1 such that an ≡ 1 mod m.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Órdenes de algunos Grupos Lineales Modulares Orders of some Modular Linear Groups

In this paper we give the definitions and calculate the orders of some subgroups of GL(m,Zn) similar to the classical linear subgroups of the general linear group over any field. Specifically, the special modular linear group SL(m,Zn), the orthogonal modular group O(m,Zn), the special orthogonal modular group SO(m,Zn) and finally the symplectic modular group Sp(2m,Zn). The technique used consis...

متن کامل

Quantifier Elimination for Linear Arithmetic

This article formalizes quantifier elimination procedures for dense linear orders, linear real arithmetic and Presburger arithmetic. In each case both a DNF-based non-elementary algorithm and one or more (doubly) exponential NNF-based algorithms are formalized, including the well-known algorithms by Ferrante and Rackoff and by Cooper. The NNF-based algorithms for dense linear orders are new but...

متن کامل

Reflecting Linear Arithmetic: From Dense Linear Orders to Presburger Arithmetic

This talk presents reflected quantifier elimination procedures for both integer and real linear arithmetic. Reflection means that the algorithms are expressed as recursive functions on recursive data types inside some logic (in our case HOL), are verified in that logic, and can then be applied to the logic itself. After a brief overview of reflection we will discuss a number of quantifier elimi...

متن کامل

Trees, Quaternion Algebras and Modular Curves

We study the action on the Bruhat-Tits tree of unit groups of maximal orders in certain quaternion algebras over Fq(T ) and discuss applications to arithmetic geometry and group theory.

متن کامل

CADE - 21 The 21 st Conference on Automated Deduction 4 th International Verification Workshop

This talk presents reflected quantifier elimination procedures for both integer and real linear arithmetic. Reflection means that the algorithms are expressed as recursive functions on recursive data types inside some logic (in our case HOL), are verified in that logic, and can then be applied to the logic itself. After a brief overview of reflection we will discuss a number of quantifier elimi...

متن کامل

Genera of Arithmetic Fuchsian Groups

Introduction. The fundamental invariant of a Riemann surface is its genus. In this paper, using arithmetical means, we calculate the genus of certain Riemann surfaces defined by unit groups in quaternion algebras. First we recall a well-known general construction of Riemann surfaces. The group SL2(R) acts on the upper half-plane H by Möbius transformations. If G is a Fuchsian group, that is, a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015